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Abstract

Background: Non-coding RNAs gain more attention as their diverse roles in many cellular processes are
discovered. At the same time, the need for efficient computational prediction of ncRNAs increases with the pace of
sequencing technology. Existing tools are based on various approaches and techniques, but none of them
provides a reliable ncRNA detector yet. Consequently, a natural approach is to combine existing tools. Due to a
lack of standard input and output formats combination and comparison of existing tools is difficult. Also, for
genomic scans they often need to be incorporated in detection workflows using custom scripts, which decreases
transparency and reproducibility.

Results: We developed a Java-based framework to integrate existing tools and methods for ncRNA detection. This
framework enables users to construct transparent detection workflows and to combine and compare different
methods efficiently. We demonstrate the effectiveness of combining detection methods in case studies with the
small genomes of Escherichia coli, Listeria monocytogenes and Streptococcus pyogenes. With the combined method,
we gained 10% to 20% precision for sensitivities from 30% to 80%. Further, we investigated Streptococcus pyogenes
for novel ncRNAs. Using multiple methods–integrated by our framework–we determined four highly probable
candidates. We verified all four candidates experimentally using RT-PCR.

Conclusions: We have created an extensible framework for practical, transparent and reproducible combination
and comparison of ncRNA detection methods. We have proven the effectiveness of this approach in tests and by
guiding experiments to find new ncRNAs. The software is freely available under the GNU General Public License
(GPL), version 3 at http://www.sbi.uni-rostock.de/moses along with source code, screen shots, examples and tutorial
material.

Background
Non-coding RNAs have drawn much attention in the
last couple of years, after being neglected for a long
time [1]. They are now known to play key roles in
diverse cellular processes such as regulation of gene
expression, splicing and directing chemical modifications
[2,3]. Functional categorization of RNAs is not yet com-
plete as new functions are discovered continuously [4,5].
Detection of non-coding RNA genes in genomic

sequences is an urgent but unsolved problem in bioinfor-
matics [6]. The accelerated pace of sequencing technol-
ogy further increases the need for reliable identification
of ncRNAs [7]. The main approaches to computational

prediction of ncRNAs are compositional analysis, second-
ary structure prediction, structural or sequence-based
homology and the use of promoters and terminator
signals. Numerous tools following one of these
approaches or combinations thereof exist [6,8].
Compositional analysis can be a simple scan for local

GC-content, an approach successful in AT-rich hyper-
thermophiles [9]. Considering more compositional
features in a machine learning approach has also shown
success [10]. Based on the fact that functional RNAs
rely on a defined secondary structure, prediction of
transcript minimum free energy is used as a means for
detecting ncRNA genes [11]. Freyhult examined differ-
ent quantities that can be used for this approach [12].
Sequence-based homology can be used for detection
if reference genomes with appropriate evolutionary
distances are available [13].
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Successful tools such as QRNA [14] and RNAz [15]
combine secondary structure prediction with a homol-
ogy approach relying on multiple alignments. The most
comprehensive RNA family database RFAM [16] uses
covariance models combining structural and sequence
conservation to establish RNA families. The covariance
model can be used to find new members of existing
families, however, at the expense of computational
effort. Dynalign [17] uses an approximation of Sankoff ’s
Algorithm for structural alignment of two RNAs.
Xiao et al. used promoter and terminator prediction

in intergenic regions aided by conservation and second-
ary structure analysis to predict ncRNAs [18].
To achieve better accuracy, some tools limit the scope

to specific ncRNA families such as tRNA, miRNA and
snoRNA [6].
However, none of the available tools for general ncRNA

detection has reached a level of reliability comparable to
protein-gene detection software. In contrast to ncRNA
genes, protein genes exhibit codon-bias, open reading
frames and strong sequence conservation, simplifying
their detection. Since the diverse methods for ncRNA
detection are complementary, a practical approach is to
combine the available methods, as suggested by recent
reviews [6,8,19,20]. Meyer et al. also remarked that many
ncRNA detection methods rest on the assumption of a
significant secondary structure, which may not always be
necessary for a ncRNA to function [8]. Consequently,
even the more successful methods, which rely on this
assumption, need to be complemented with others to
achieve more comprehensive predictions.
The combination of methods allows for precise predic-

tions by using candidates that are predicted by several
methods, or finding more candidates by using predictions
from all methods. If the combination is done under a well
designed framework, reproducibility, transparency and
comparison of predictions are improved as well.
Previous efforts for the integration of data and algo-

rithms in genomic research exist: RNAStructure inte-
grated secondary structure prediction and structure
based homology analysis but is not easily extended and
not readily useable for genomic scans [21]. Tools such
as sRNAfinder [22] combine several approaches to
improve prediction results, but in a predefined way. The
UCSC genome browser offers a huge amount of experi-
mental data, pre-calculated predictions and analyses for
a selected number of genomes [23]. Basic functions for
comparative genomics are available, extended by an
interface to Galaxy. Galaxy is a project that also aims to
overcome custom and redundant scripting for bioinfor-
matics tasks in genomic research, but does not yet offer
specialized tools for ncRNA prediction [24]. TAVERNA
is a powerful all-purpose framework, but its primary
source of functionality “BioCatalogue” does not yet

contain essential ncRNA related tools such as RNAz
and Dynalign [25]. LeARN is an extensible framework
for annotating newly sequenced genomes, but it is more
focused on processing trusted results from detection
tools rather than improving predictions by the combina-
tion of analyses from different algorithms [26]. Conse-
quently, there is a need for a framework that is easy to
use and specialized for non-coding RNA detection. The
main goals of our project are:

• Combination: Improving ncRNA detection by
combining existing methods.
• Comparison: Easy comparison of the prediction
performance of different methods must be possible.
• Reproducibility: application, combination and
comparison of methods must be performed in a
reproducible and transparent way.
• Usability: User experience should be improved by
a GUI and visualization of all workflow steps and
their respective results. No programming should be
required to construct workflows, and to combine
and compare methods.

Our software is aimed at three user groups: First, for
bioinformaticians, the use and the combination of inte-
grated tools must be simple. Second, developers of new
algorithms for ncRNA detection must be provided with
a ready-to-use environment and test bed. This removes
the need to re-program solutions for tasks such as par-
sing files or visualization. Third, biologists must be able
to re-use tested methods easily.
The implementation presented here supports compo-

sitional analysis, sequence-based homology (BLAST
[27]), sequence and structural homology (RNAz [15]
and Dynalign [17]) and secondary structure prediction
(using RNAfold [28]). Our tool can easily be extended
through an open architecture.
We will show how moses was designed to fulfill the

given goals in the next section. In case studies we then
demonstrate the effectiveness of combining methods:
Precision or sensitivity are increased alternatively.
Furthermore, our framework has been successfully
applied to guide experiments in Streptococcus pyogenes
to find new ncRNAs.

Methods
Key Idea
Our software moses (modular sequence suite) processes
and combines the results of different methods to find
regions in a genome that contain ncRNA gene candi-
dates. To do so, the user constructs a workflow from
modules. Figure 1 shows a simple example of such a
workflow. It consists of three modules: the first one
loads a sequence from a Genbank file [29], the second
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calculates the GC-content using a sliding window for
that sequence and finally a threshold filter module high-
lights regions of increased GC-content. In special cases
such as Pyrococcus furiosus, increased GC-content is an
accurate indication of a ncRNA gene [9]. After the
threshold filter has been applied, for each window there
is a prediction whether it contains a potential ncRNA
gene or not. From this information a list of candidate
locations can be constructed and used in experiments to
verify the predictions. A more sophisticated detection
workflow is shown in Figure 2. This workflow is also
the one used for the case studies, described below.
An advantage of our modular approach is that it pro-

vides a good trade-off between flexibility and complex-
ity: The user constructs workflows simply by chaining
modules together and providing the parameters needed
for its calculation. The output of every module can
serve as the input for every other module. This allows
for a free combination of modules while not requiring
any programming skills.
The modules used to construct workflows can contain

external tools, directly implemented analysis methods or
helper functions. Each module represents one step in an
analysis workflow. In the case of external tools, the
module converts the input data, runs the tool, parses
the output and converts it back into the moses format
to ensure compatibility between all modules. Converting
to one common data exchange format is more efficient
than converting input and output between different
tools, even though this is common practice in bioinfor-
matics using custom scripts. The format we chose is a
matrix of float values. Columns in the matrix corre-
spond to nucleotide positions. Rows can hold different

kinds of information, for instance ncRNA probability
scores from several detection methods.
This basic format is very simple and yet can hold all

types of information needed for the purpose of ncRNA
prediction. The modules can be written using a data
structure that is familiar to most programmers.
The parameters needed to run a module are saved in

human readable format in the corresponding moses-file
along with IDs identifying the source modules. This cre-
ates a structure of dependent calculations that form a
detection workflow. Individual modules of this workflow
can be exchanged to modify and re-use the workflow.
For example, the modules holding the analysed genome
can be exchanged to perform an identical scan on a dif-
ferent species.

Main detection methods
The key modules moses provides are BLAST [27],
word frequency analysis (typically used for GC-content
analysis), RNAfold [28], RNAz [15] (using ClustalW
[30] for alignments), Dynalign [17] and calculation of
DNA properties, such as base stacking energy or bend-
ability. BLAST can be used to compare two genomes,
scan a genome for occurrences of a query sequence or
locate conserved regions of a genome by BLASTing
against a local database created with the BLAST helper
tool formatDB. The RNAfold module uses a sliding
window approach. For each sliding window the mini-
mum free energy structure is predicted, and the corre-
sponding minimum free energy value is stored at the
centre position of the respective window. This results
in a numerical profile aligned with the genome’s base
pairs.
The RNAz module scans a genome for ncRNA,

requiring the output of several BLAST modules. Again,
a sliding window approach is used. For each window,
the most similar regions in reference genomes, as
detected by BLAST, are used to construct a multiple
alignment using ClustalW. This alignment is then ana-
lysed for ncRNA by RNAz. Finally the RNAz-score
(called “RNA class probability”) is stored at the win-
dow’s centre position.
Similar to the RNAz module, the Dynalign module

uses a sliding window and relies on BLAST modules to
find the most similar regions in reference genomes for
each window. A structural alignment of the analysed
window and the region with the best BLAST-score is
calculated using Dynalign. The output for each window
is the alignment score.
The DNA properties module is similar to the RNA-

fold module, it calculates a numerical profile corre-
sponding to a certain physical property of a DNA
subsequence. The work of Abeel et al. shows that pro-
files of thermodynamic DNA properties can be used to

Figure 1 Example detection workflow in moses. This simple
detection workflow consists of three modules: the first one loads
the sequence and annotations from a Genbank file, the second
calculates the local GC-content in sliding windows, the third
highlights windows, where the GC-content exceeds a certain
threshold. In genomes of AT-rich hyperthermophiles, for instance,
this simple method allows accurate prediction of ncRNAs.
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detect transcriptional signals. Those signals not point-
ing to known protein genes may be indications of
ncRNA genes [31]. DNA base stacking energy, bend-
ability or protein induced deformability are examples
for such properties. To calculate a numerical profile
we use the procedure given by Abeel et al. [31]: Each
(overlapping) dinucleotide of a DNA sequence is con-
verted into a number according to a conversion table.
These values are then smoothed using a sliding

window, for each window the average is calculated and
stored at the centre position of the window. Para-
meters for the properties were taken from EP3, a pro-
moter detection tool developed by Abeel et al. [31].
The full list of available properties can be viewed on
the tool’s website (http://bioinformatics.psb.ugent.be/
webtools/ep3/?conversion.)
Besides the key modules, predictions from RFAM can

be incorporated by BLASTing against a RFAM dump.

Figure 2 Workflow used for tests of the combined detection method. RNAz branch: The analysed genome is compared with each of the
reference genomes using BLAST. It is then processed using a sliding window. For each window the best matching subsequences from the
reference genomes, as found by BLAST, are retrieved. These subsequences and the sequence from the window of the analysed genome are
then aligned by ClustalW (which is part of the RNAz module). Finally, the resulting alignment is analysed for conserved secondary structures by
RNAz. If the prediction score given by RNAz is above the threshold of 0.9, the window is predicted to contain ncRNA. Dynalign branch: The
analysed genome is processed using a sliding window, for each window the most similar regions of the reference genomes are given by the
BLAST modules. The region with the highest BLAST score is used for structural alignment using Dynalign. The resulting alignment score is
compared with a threshold to give a final prediction. RNAfold branch: The first RNAfold module predicts the minimum free energy of the
minimum free energy structure for sliding windows of the analysed genome. Another RNAfold module does the same for shuffled versions of
these windows. The obtained mean and standard deviation of the distribution are used to calculate a threshold: If the minimum free energy
value of the original window is 3.5 standard deviations above the mean, the window is considered to contain a potential transcript with a highly
defined secondary structure, an indication of a possible ncRNA. Combination: To combine the signals from the two methods, the overlap or
the union of two or three methods is calculated to improve precision or sensitivity, respectively.
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To include terminator predictions, output from Trans-
TermHP [32] can be loaded as well.
All available methods can also be applied to sub-

regions of a sequence. This is useful, for instance, to
exclude protein gene regions from analysis or limit the
calculations to a region of interest. Furthermore, moses
provides a number of arithmetic and logical function to
process the result of any method.
These functions are also applied for combining the

detection methods to arrive at more precise or more
sensitive predictions. Usually, this involves trading preci-
sion for sensitivity or vice versa. A more precise com-
bined prediction is achieved by considering only
predictions made by more than one individual method.
A more sensitive combined prediction is achieved by
collecting the predictions from all individual methods. A
more sophisticated combination is to use weighted
scores of individual methods: Reliable methods can be
weighed higher then relatively unreliable ones to get a
combined result that is more precise yet retains much
of the sensitivity of the individual methods.
The quality of any single or combined detection method

can be analysed and compared using the built-in statistical
evaluation, if data of known ncRNAs is available.

Graphical User Interface and Visualization
To make our software accessible to a wide range of
users and to enhance usability, we provide a graphical
user interface. Included features of the interface are:

• easy access to external tools as moses modules,
• constructing workflows with visualization of the
modules’ dependencies,
• multiple modes visualization of numerical profiles
and for visual inspection, comparison and detection
of correlations,
• browsing of genome annotations or calculated pre-
diction signals,
• statistical assessment of each method, e.g., preci-
sion, sensitivity.

Integrated visualization of all intermediate results of a
workflow helps finding mistakes, hypothesis generation
and interpretation of results in the context of all avail-
able information.

Results & Discussion
Case Studies
To prove the effectiveness of combining detection
methods, we used three methods, based on RNAz,
Dynalign, RNAfold, and precalculated terminator pre-
dictions by TranstermHP on sets of known ncRNAs in
Escherichia coli, Listeria monocytogenes and Streptococ-
cus pyogenes. References for the known ncRNA sets are
provided in Table 1. To give an reasonable estimation
of the quality of the used methods we constructed test
regions around known ncRNA extending 1500 bp up-
and downstream around the known ncRNA. The flank-
ing sequences serve as negative samples, the size was
chosen to obtain a large number of negative samples
while keeping the computational cost manageable. This
results in regions composed of about 6% known
ncRNA, 80% protein genes and 14% intergenic back-
ground, see Table 1. These compositions allow for the
sampling of known positives as well as known negative
regions in a realistic setting without the use of ran-
domly generated negatives.
On this test region, we used the workflow shown in

Figure 2. The complete workflow with parameters and
all data calculated for the three genomes is available on
the moses website (http://www.sbi.uni-rostock.de/moses/
data.html). The workflow consists of four branches, one
for each of the RNAz, RNAfold and Dynalign based
methods and one for the terminator predictions by
TranstermHP. The first three methods use a sliding
window with window size 75 sliding 1 base pair at a
time. We checked for the influence of the window size
by also trying the sizes 51 and 101 with the RNAz and
the RNAfold method, see Table 2 for a comparison. The
tests suggest that each method has a different optimal
window size. Since we want to combine methods we
chose the same window size for all methods. We chose
75 bp because it seems to produce almost as good
results as 101 bp but at lower computational costs. Data
for these tests is also provided on the moses website.
The RNAz and the Dynalign branch both rely on

BLAST modules that report for each window of the ana-
lysed sequence the most similar regions in four refer-
ence genomes. The reference regions are chosen to be
the same size as the sliding windows. The reference gen-
omes used are given in Table 3.

Table 1 Construction of the test regions for the case studies

Escherichia coli str. K-12 substr. MG1655 Listeria monocytogenes EGD-e Streptococcus pyogenes MGAS5005

regions size 222873 bp 284982 bp 212215 bp

known ncRNA 151 consisting of 11900 bp (5.3%) [29,35] 101 consisting of 19440 bp (6.8%) [36] 73 consisting of 14625 bp (6.9%) [34]

intergenic background 32754 bp (14.7%) 37317 bp (13.1%) 37067 bp (17.5%)

protein genes 180505 bp (81.0%) 231107 bp (81.1%) 163416 bp (77,0%)
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The RNAz module scans a genome for ncRNA using a
sliding window. For each window, the most similar
regions in the reference genomes, as detected by the
BLAST modules, are alignment together with the ana-
lysed window using ClustalW. The resulting multiple
alignment is then analysed by RNAz to give a so called
“RNA class probability”.
In the Dynalign method, only the reference region

with the highest BLAST score is used for structural
alignment using Dynalign.
The RNAfold method consists of two steps: First the

minimum free energy value of the energetically optimal
fold is calculated for each window. Second, the distribu-
tion of minimum free energy values for sequences of the
nucleotide composition and length given by the analysed
window is sampled. To this end RNAfold calculates the
minimum free energy value for shuffled versions of the
original window. The shuffling method by Altschul et al.

[33] is used to preserve not only the mono - but also the
dinucleotide composition, because the secondary struc-
ture prediction is especially sensitive to the dinucleotide
composition. For our tests we used 100 shuffled versions.
Mean and standard deviation are obtained from the
sampled distribution to estimate the significance of the
actual minimum free energy value. The final output of
the RNAfold method is the Z-score for each window.
The Z-score is the difference of the value of the original
window and the mean in standard deviations. The RNA-
fold module inverts the sign of the minimum free energy
values for convenience. The RNAfold method and the
RNAz method are closely related but RNAz does not use
the Z-Score of the original sequence, it rather uses
averages of the Z-Scores from all sequences in the align-
ment. Our results show that the pure Z-Score as used by
Kavanaugh et al. [11] is useful for ncRNA prediction,
however, the way RNAz approximates Z-Scores is orders
of magnitudes faster and practically of the same accuracy.
For the integrated tools BLAST, ClustalW and RNAz

default parameters are used. Graphical output of predicted
structures is suppressed for RNAfold to save computation
time. TranstermHP predictions for Listeria monocytogenes
and Streptococcus pyogenes were download from the
TranstermHP website (http://transterm.cbcb.umd.edu/),
predictions for Escherichia coli were performed using the
downloaded program using default parameters.
The methods were combined by applying threshold

filters to results of the RNAz, RNAfold and Dynalign
method. The thresholds were 0.995, 4.5 and 550 respec-
tively. For TranstermHP the confidence score threshold
was 70, the default value used for the pre-calculated
predictions from the TranstermHP website. Based on
the parameter scans that were performed we selected
values that gave intermediate precision and sensitivity
for the individual methods.
After the thresholds have been applied in the centres

of each window a “0” is stored if the value was below or
equal to the threshold, “1” if above. The values for those
three methods were added, additionally a “1” was added
for each base pair of a predicted terminator.
The resulting sequence of integer values from 0-4

were then scanned using another sliding window. We
tried different window sizes and 75 bp gave the best
results (data available on the moses website). For each of
those sliding windows the mean was calculated and

Table 2 Influence of the window size in Escherichia coli

method RNAz RNAfold

window size 51 75 101 51 75 101

precision 0.21923937 0.21484879 0.23922414 0.2338333 0.2634066 0.24783753

sensitivity 0.23058824 0.12596639 0.13058823 0.07991596 0.10773109 0.1107563

Test of the RNAfold method (Z-Score threshold 3.5) and the RNAz method (threshold 0) in Escherichia coli for different window sizes.

Table 3 Used Genomes

Species Accession
Number

Tested Genomes

Escherichia coli str. K-12 substr. MG1655 NC_000913

Listeria monocytogenes EGD-e NC_003210

Streptococcus pyogenes MGAS5005 NC_007297

Reference Genomes

Enterobacter sp. 638 NC_009436

Erwinia_tasmaniensis NC_010694

Klebsiella pneumoniae 342 NC_011283

Salmonella enterica subsp. enterica serovar
Enteritidis str. P125109

NC_011294

Listeria innocua Clip11262 NC_003212

Listeria welshimeri serovar 6b str. SLCC5334 NC_008555

Listeria seeligeri serovar 1/2b str. SLCC3954 NC_013891

Streptococcus agalactiae 2603VR NC_004116

Streptococcus equi subsp. zooepidemicus str.
MGCS10565

NC_011134

Streptococcus pyogenes M1 GAS NC_002737

Streptococcus pyogenes MGAS315 NC_004070

Genome for new predictions

Streptococcus pyogenes NZ131 NC_011375

Genomes for BLAST sequence
conservation analysis

see moses website
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another threshold filter was applied. We used thresholds
from 0-1.5 in steps of 0.05, resulting in predictions with
sensitivity and precision given in Figure 3.
Sensitivity and precision were calculated using the

usual definitions: Sensitivity is the ratio of true positive
windows to all known ncRNA-containing windows. Pre-
cision is the ratio of true positive windows to the sum
of true positive and false positive windows.
While window-based precision and sensitivity are good

to compare different methods, they do not reflect the
practical value of predictions that are to be used to guide
experimental verification of candidates. In practice,

several windows next to each other that are predicted to
contain ncRNA will be seen as one predicted locus or
signal (for our purposes we want to neglect gaps). Those
signals will then be used to guide experiments instead of
each individual window.
Therefore, we define signal precision as the ratio of

signals that overlap known ncRNA to all signals as an
analogue to precision, and we define signal sensitivity
as the ratio of known ncRNA that overlap a signal to
all known ncRNA as analogue to sensitivity. The sig-
nal-based figures can be misleading if used alone, as
too long signals will yield high signal precision and

Figure 3 Prediction performance of five methods in Escherichia coli, Listeria monocytogenes and Streptococcus pyogenes. Species 1a-c
are results for Escherichia coli, 2a-c for Listeria monocytogenes, 3a-c for Streptococcus pyogenes. Blue graph: RNAfold-Zscore, threshold varied from
0 to 8.2 in steps of 0.2. Black graph: RNAz, probability score threshold varied from 0 to 0.9 in steps of 0.1, 0.9 to 0.99 in steps of 0.01, 0.99 to
0.999 in steps of 0.001, 0.999 to 0.9999 in steps of 0.0001, 0.9999 to 0.99999 in steps of 0.00001. Orange graph: Dynalign, alignment score
threshold varied from 0 to 700 in steps of 20. Green graph: TranstermHP, confidence score varied from 70 to 100. Pink graph: combined
method, score threshold varied from 0 to 1.5 in steps of 0.05.
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signal sensitivity without being specific enough for
experiments. In order to check the quality of the pre-
dictions, we also calculated the false positive rate
defined as the ratio of false positive windows to all
windows known to not contain ncRNA. Figure 3
shows the prediction quality of the four individual
methods and the combined method for all species in
terms of window-based and signal-based figures as well
as the false positive rates.
The plots reveal that for a wide sensitivity range the

combined method largely improves the “signal-precision”
by 15% and the window-based precision by about 10%
across the three tested species. The improvements
are confirmed by the reduced false positive rate visible in
Figure 3, subfigures 3a-c.
Our tests show that our software allows for a flexible

and easy combination of ncRNA detection methods and
that the combination improves detection results. Meth-
ods can easily be compared using the available statistics.

Prediction of novel ncRNAs
To show that moses can successfully guide experimental
detection of ncRNA we present predictions for Strepto-
coccus pyogenes NZ131, a human pathogen. We used
four methods in a genomic scan to minimize false posi-
tives. As we have seen in the case studies, which were
based on automated workflows, even the improved
methods suffer from relatively high false positive rates.
To arrive at a candidate list that had the most potential
to be true ncRNA genes–in order to minimize unsuc-
cessful experiments–we used manual inspection of mul-
tiple data sources instead.
All data calculated and the used parameters are avail-

able on the moses website.
The data sources were RNAfold secondary structure

predictions, calculated DNA base stacking energy,
BLAST-calculated conservation against related genomes
and RNAz-predictions. The RNAfold module was used
with window size 41, the DNA properties module with
window size 81, step size 1 base pair in both cases. For
RNAz the window size was 41 with step size 5 base
pairs. The calculations were performed on the full gen-
ome sequence.
We examined the characteristic RNAfold and DNA

base stacking energy profiles around known ncRNA
genes to manually distinguish them from genomic
background.
Also, isolated conserved spots were considered as

clues for potential genes. Conservation was determining
by BLASTing the NZ131 genome against all pyogenes
serotypes in one module and against a selection of
Streptococcus genomes in a second. Intergenic regions
were examined for these four clues. Data used for the
visual inspection is available on the moses website.

The procedure resulted in a list of 20 candidates. The
features our selection of 20 candidates was based on, is
listed in Table 4. We confirmed this list using the RNAz
module with the same reference genomes as in the
Streptococcus pyogenes test.
From the 20 candidates, four highly probable candi-

dates were selected based on RNAz prediction and pre-
sence of a putative terminator, visible as a peak in the
RNAfold profile. As the minimum free energy value cal-
culated by RNAfold is a measure of the thermodynamic
stability of RNA structures, such a peak can be an indi-
cator of ncRNAs as well as of terminators. The locations
of the putative terminators were used to aid placement
of the downstream primer for the RT-PCR experiments,
as a terminator gives an indication of where the 3’ end
of a possible ncRNA is located. RNAz predictions were
used as the most probable centre of the potential tran-
script. An example of the information calculated
in moses around the candidate regions is displayed in
Figure 4. Corresponding screenshots of all four can-
didate regions and data used for primer design with
genomic coordinates are given on the moses website.
The combination of multiple methods, possible in

moses, has yielded highly probable candidates. RNAz or
BLAST alone, for instance, would have given us hun-
dreds of candidate loci to examine (data on the moses
website).
Expression of the four highly probable candidates was

verified by reverse transcription (RT) followed by PCR,
see Figure 5. Reactions without addition of the RT
enzyme served as negative controls. Reverse transcrip-
tion of the EMM-gene was performed as a positive con-
trol, which is known to be expressed in this strain
under the conditions tested in our experiments. Details
of the experimental procedure, including the used pri-
mers, are available on the moses website and in Addi-
tional file 1. The candidates were named mopsRNA1-4
(moses predicted small RNA). Candidates 1 and 4 over-
lap with candidates reported as predictions by a pre-
vious bioinformatic search in the study of Perez et. al
[34], labelled SR307231, SR759205 and SR758876.
Our predictions demonstrate that the integrated

approach possible with moses is able to guide experimental
detection of new ncRNAs. The RT-PCR experiments are
not sufficient to rule out that the observations are related
to neighbouring transcripts rather than true ncRNA.
Accordingly, further experiments are in progress to
confirm and characterize the four new candidate ncRNAs
and their function in Streptococcus pyogenes physiology
and virulence.

Limitations
The computationally more demanding algorithms RNAz-
analysis and RNAfold secondary structure prediction with
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shuffled comparison sequences need approximately 120
hours for full prokaryotic genomes (assuming an average
size of 4 MB) on standard workstation computers.
Dynalign takes even longer because it performs full struc-
tural alignments.
Our tests were performed on a machine with Intel(R)

Core(TM) 2 Duo CPU 2.66 GHz with 2 GB of RAM with
the use of parallelization. The RNAfold method and then
RNAz method both took three hours for 99.950 analysed
windows (for an analysed genome, the number of base
pairs minus the window size plus one equals the number
of windows to analyse). The window size for both meth-
ods was 51. The windows step was one base pair to
obtain maximum resolution. However, this is not to
imply that we can predict the exact gene starts and ends.
For the RNAfold method 100 shuffled windows were
used and three reference genomes for the RNAz method.
If the analysis is limited to the intergenic regions, the
time is reduced depending on the percentage of coding
regions of the genomes under examination (often, inter-
genic regions constitute 10% of prokaryotic genomes).
Other ways to avoid too long calculations include choos-
ing a larger step size and parallel calculations by dividing
analysed genomes in smaller parts.
The methods used here are in principle not restricted

to prokaryotes, but to the sheer size of the genome.

Conclusions
We developed a framework for reproducible, transparent
and easy combination of existing ncRNA detection
methods. Our contribution helps to satisfy the need for
a combined approach as suggested by recent reviews
[6,8,19,20]. The main improvements our framework pro-
vides are:

Improved ncRNA detection by combining existing
methods
Wrapping existing tools and methods in moses modules
that convert input and output formats to a common
data interchange format makes combination possible.
We have demonstrated the effectiveness of combining
methods in tests on Escherichia coli and Streptococcus
pyogenes. Further we predicted novel ncRNAs in Strep-
tococcus pyogenes using multiple methods to yield highly
probable candidates, thereby reducing unsuccessful
experiments. Final confirmation and subsequent charac-
terisation of the candidates is in progress.

Facilitated comparison of methods
The used methods can readily be compared using the inte-
grated accuracy report. Statistical figures such as signal
based and by-base-pair precision, sensitivity are readily at
hand. This allows effective evaluation of existing methods

Table 4 Criteria for visual inspection of intergenic regions in Streptococcus pyogenes NZ311

start 1) BLAST vs Streptococci 2) BLAST vs S. pyogenes 3) DNA base stacking energy 4) RNAfold

1 202790 X X

2 216807 X X X

3 273446 X X X

4 308253 X X X

5 349593 X X X

6 362796 X X

7 363720 X X X

8 407642 X X

9 506298 X X X

10 512500 X X X

11 554314 X X X

12 568980 X X X

13 806825 X X

14 827250 X X

15 949486 X X

16 1201476 X X

17 1487751 X X X

18 1571435 X X

19 1581266 X

20 1704825 X X X

Criteria: 1) increased conservation shown by BLAST against selected Streptococci genomes (see the moses website for a List). 2) increased conservation shown by
BLAST against all Streptococcus pyogenes substrains. 3) increased DNA base stacking energy profile or presence of two nearby peaks. 4) a peak in the RNAfold
profile.
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Figure 4 Data used for determination of ncRNA candidates in Streptococcus pyogenes. This screenshot shows an example of the data used
to find intergenic regions that may contain ncRNA genes. The first row contains annotations from the Genbank file downloaded from NCBI.
Green and blue bars correspond to protein genes. The second row contains the hand-picked candidate regions. The blue block delimits the
region where an ncRNA is suspected. Start and end of this region are not accurate as the methods used do not allow for exact determination of
the transcript. The red lines indicate the start and end of the candidate regions for visual orientation. The third row contains the RNAfold
minimum free energy profile, a clear peak is visible indicating a strong RNA structure. Row four contains the DNA base stacking energy profile,
two peaks delimit the candidate region and a third peak is inside, from our visual inspection of all intergenic regions this profile is notably
different. Row five and six contain the scores for each window of the analysed genome for a BLAST search against all Streptococcus genomes
and against all Streptococcus pyogenes genomes respectively, notable are the conserved regions outside the protein genes. The last row contains
the RNAz predictions. The shades of blue in lines 2-7 correspond to the height of the respective bars. Screenshots for all four candidates are
given on the moses website.

Figure 5 Presence of predicted ncRNA transcripts in cDNA of Streptococcus pyogenes M49 grown to different phases of the growth
cycle. Analysis of RT-PCR products by agarose gel electrophoresis. Details of the experimental procedure are given on the moses website.
M: molecular weight marker, A-D: mopsRNA1-4 (candidate genes); E: M protein encoding emm gene (control), (-) RT mock reactions, (+) RT
reactions containing reverse transcriptase, E: exponential growth phase, T: transition growth phase, S: stationary growth phase.
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and the selection of appropriate methods, e.g., according
to available reference genomes or given taxon.

Improved reproducibility, re-usability and transparency
Workflows are self-documented as all parameters and
data dependencies are stored in the moses files. This
means the workflows are transparent because no hidden
conversions and no implied functions are performed,
only the ones defined by the user. No custom scripts or
custom in-house software is involved in studies carried
out in moses. Furthermore, an existing workflow can be
reused on different sequences, different data or altered
parameters.

Improved Usability
We created a GUI and visualization for all intermediate
steps of a workflow. This enables to detect flaws in a
workflow and helps to interpret the results. The inte-
grated environment supports hypothesis generation and
brings data and results in context with all available
information.
The method of constructing workflows in moses is easy

as it requires no programming and no scripting. This
makes it an attractive tool for bioinformaticians. Extend-
ing the framework with new algorithms is made easy
through an open architecture with a plug-in mechanism.
Programming effort is thus minimized and developers of
new algorithms are provided with a ready-to-use plat-
form. Biologists can easily reuse existing workflows.

Outlook
The next step in the development of our framework is the
integration of further existing methods and algorithms.
Combination of methods could be enhanced by including
support for SVM training and classification. Possibly, in
the course of adding more tools the scope could be
expanded to not only find ncRNA genes but protein
genes, promoters, terminators and transcription factor
binding sites as well. The result would be a complete
picture of a genome under one common framework.
A recent approach to detect regulatory regions is pattern

recognition in profiles of physical properties of the DNA,
see for instance [31]. As our framework offers different
sources for such profiles, not only based on physical prop-
erties, it is a natural extension of our work to apply pattern
detection to the profiles calculated by moses.

Additional material

Additional file 1: Experimental procedure for verification of four
selected ncRNA candidates. Additional file 1 is a Microsoft Word
document with a detailed description of the materials and methods
employed for experimental verification of the final four ncRNA
candidates.
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